+--+
| DBDLL Fast Database Indexing Functions |
| Version 1 by Brosco - June 98 |
| Documentation by Dean Hodgson and Brosco |
| Email: brosco@orac.net.au |
+--+

TERMS

DBDLL is supplied on an ‘as is’ basis. No warranty or success is implied or guaranteed.

INTRODUCTION

Dbdll is an indexing system designed to allow fast retrieval of information in sorted order from random access data files. All the sorting is done on disk by sophisticated binary and B-tree like routines. There is almost no limit to the number of records in the data file. Your own data is stored in your own random access data file(s) and Dbdll is used to produce special additional index files.

While this DLL has been tested fairly thoroughly, the odd gremlin may still exist. DBDLL has been written specifically for users of Liberty Basic (LB) so there should not be any problems with that language and the calldll parameters. As DBDLL is a general purpose Dynamic Link Library (DLL), it should work with other programming languages that can call dll functions as well. DBDLL has been tested under ZBasic for Windows (ZBW) and GFA-Basic and found to work.

There are three programs that demonstrate the program: Dbcalls, Speed and Dbdemo. Dbcalls demonstrates the functions and general procedure and Speed provides timings for accessing the index. Dbdemo is a different demonstration using a simple datafile of books. These program files for LB have the file extension LB, for ZBasic ZBW and for GFA-Win LST.

For the rest of this document, the syntax used to call the DLLs presented is that used by Liberty Basic. It is almost identical to that used by ZBW but very different from the syntax in GFA. Examples of calling the functions from GFA-Basic are found in the demo files. Also, please refer to the sections at the end specific to these languages.

RANDOM ACCESS DATA FILES -- in brief

A random access data file is one where each record is a set, fixed size. As an example, we’ll design a simple database for storing a small book collection (this is in the file DBDEMO). Each record in the list (or file) contains information about one book. The record is divided into fields, each of a specified length. The sum of the lengths of all fields is the record size.

LB random access files are opened via the OPEN command:

	open "books.dat" for random as #book len = 100

which opens the file “books.dat” for random read/write access using the file handle #book and having a record length of 100 characters.

The statement FIELD# is used to define the size of the fields and their variable names for the record:

field #book, 50 as title$, 25 as series$, 25 as author$

This command is usually issued after the Open statement. Once data has been entered into the variables -- usually through input means such as Input, Input$ or Textbox statements -- is then saved to the file with the command:

	put #book, recno

where recno is a variable that holds the record’s unique number. Each record can have only one unique record number (URN). Record 1 is the first in the file. If the data in the fields is shortened than the length specified, LB automatically adds blank spaces to pad out each field. Data is saved “left justified” in the field.

When you want to read back the data, the GET# command is used:

	get #book, recno

This retrieves data from the specified record number and puts it into the variables listed by the Field# statement. Space padding at the end of each field is not removed. However, the command

	gettrim #book, recno

does read the fields and at the same time trims off blank spaces at the end of each field.

It is important to remember to close #book your database file when you are finished before exiting your program. Failure to do this can cause loss of data.

THE CONCEPT OF INDEXING

Records saved in a random access file are usually not stored in any particular order other than that with which they have been entered. Indexing is one method whereby records can be retrieved in sorted, alphabetical order. Indexing also permits very fast searches of the data file -- much faster than if each record was checked individually.

Indexing is similar to using the index of a book. In a book, words and terms are presented alphabetically, allowing quick location of the desired entry. Next to each entry are the pages. A database index works in a similar manner. Each indexed field is stored with its URN. Multiple occurrences of the same data can be stored as well, with each having its own URN.

A ‘brute force’ search is one where every record in the main database is checked during a search. Large databases of several thousand records can take some time to do this. An index is used for very fast search and retrieval regardless of the total number of records.

With Dbdll, each field to be indexed requires the creation of its own file. In the book collection example, if we wanted to index the title$, series$ and auth$ fields, we would create a separate file for each one. When searching titles, the titles index file would be searched. The results of the search would tell us where to find the records in our main database file.

OPENING THE DLL

Before you can use the Dbdll file, it needs to be opened. In Liberty Basic, this is done by the command:

	open “dbdll.dll” for dll as #db

Before exiting your program the command Close #db should be issued to free the DLL from memory. (Note: The syntax of this statement is different in ZBW and GFA. Please refer to the notes near the end.)

CREATING THE INDEX

An index can be created and added to at the same time as your database or it can be made later. (Many programs allow ‘reindexing’ the main database as an option as well as automatically indexing when data is stored.) To illustrate the functions below, we will build an index file of titles to accompany the book collection database.

CreateIndex

The CreateIndex function’s syntax in LB is:

	fn$ = “title.idx”		‘this is the index’s filename
	calldll #db, “CreateIndex”, _ ‘this calls the CreateIndex function
	 fn$ as ptr, _			‘this specifies the filename
	 50 as word, _		‘this is the length of the title$ field
	 1 as word, _		‘0= no duplicates, 1=duplicates allowed
	 result as word		‘0 = created OK, anything else is an error

The length specified should be the same as that of the field in the FIELD statement. We’ve used 50 as this is the length of the title field.

The third parameter indicates whether or not duplicate entries in the index are allowed. For books, it is possible to have more than one copy of the same title. Set this value to 0 if you do not want to have any duplicated entries.

The result of the function indicates whether or not the file was created.

If the index file already exists, issuing the CreateIndex function will completely erase it and make a new, empty file. This is useful for reindexing.

CreateIndex does not leave the file open, so after creating an index you have to open it.

OPENING THE INDEX

An index file must be opened to be used. This is a separate command to opening your main data file.

	Calldll #db, “OpenIndex”, _
	 fn$ as ptr, _		‘the index filename
	 ShareMode as word, _	‘indicates if the index is to be shared or not
	 SplitMode as word, _	‘used to optimize branching
	 hx as word		‘result is the open file’s handle value

ShareMode is used in situations where the index could be accessed by more than one user at the same time, which occurs on networks. Several workstations may share a common database and index files on a ‘server’ and may need to access these files at the same time. If ShareMode is set to 0, then the files are opened so only one user can access them at a time. ShareMode = 1 indicates that many users can read the file at the same time but only one user can write to it at a time.

SplitMode is used to optimize the index file. If the data being indexed is added in random order, or you don’t know the order, then SplitMode should be set to a value of 0. If the data is already sorted and in ascending order, SplitMode =1 will produce a more compact index file. If the data is sorted in descending order, SplitMode =2 can be used. SplitMode only affects AddKey (see below) and the size of the index file. Using the wrong SplitMode can result in an unnecessarily large file. SplitMode =0 is the normal condition in most instances.

hx is the value returned by OpenIndex. It is the “file handle” that Windows assigns to the file. hx is used in all subsequent Dbdll calls.

If you need to index several fields in your database, simply create and open an index file for each field. Please note that Windows and Dos impose a maximum number of open files at a time. This can vary with different systems. Default is 20 files. The Windows API function SetHandleCount can be used to alter this.

CLOSING THE INDEX

The function CloseIndex is used to close an open index file. Do this before exiting your program.

	Calldll #db, “CloseIndex”, _
	 hx as word, _			‘file handle of open index to close
	 result as word			‘this could be voided

ADDING TO THE INDEX

AddKey is used to add to the index file. A “key” is a term often used to refer to an indexed field.

	Calldll #db, “AddKey”, _
	 hx as word, _			‘file handle returned by OpenIndex
	 k$ as ptr, _			‘field data to be indexed (the ‘key’)
	 urn as long, _			‘the record’s unique record number
	 result as word			‘0=success, anything else is an error

K$ should contain the same data as is in the main data file. In the case of our Books.Dat database and title index, k$ = title$. If the string is less than the fieldsize specified in CreateIndex, Dbdll automatically adds spaces at the end. Dbdll also truncates the string if it is too long.

URN is the record’s unique record number where the title is. This is the record number in your random access file. As we allow duplicate entries of the title (specified in CreateIndex above), the URN for each duplicate would be different. Setting to non duplicates produces an error if you try to index a field entry that is already indexed.

AddKey indexes one field and record at a time. It must be called to index each field and each record. The URN passed to AddKey must be a value of 1 or greater.

SEARCHING THE INDEX

The main strength of indexing is the ability to quickly locate records based on a search. Dbdll does this extremely fast. A range of functions are included for searching and then moving through the index.

GetKey

The GetKey function searches for a particular string and returns the urn in the main datafile where it is located. The syntax is:

	Calldll #db, “GetKey”, _
	 hx as word, _		‘handle of the file from OpenIndex
	 k$ as ptr, _		‘key to search for
	 result as long		‘the URN of the key

If GetKey cannot locate an exact match to the search term (in k$) or an error occurs, a result of 0 is returned. Otherwise the result is the record number in the main datafile where the key is located.

After finding the URN from GetKey, use GET #book, URN to read the field data.

GetFirst

In contrast to GetKey, GetFirst searches for the first occurrence of the search term as a partial string. The syntax is:

	Calldll #db, “GetFirst”, _
	 hx as word, _		‘handle of the file from OpenIndex
	 s$ as ptr, _		‘term to locate
	 result as long		‘the URN found

GetFirst returns the URN of the first record that contains the term s$ at the beginning of the field being searched. This could be an exact match as for GetKey but it could also be the first letters or words of a field. This permits fast “begins with” style searches. If you were searching for “DRA” then the first URN found might contain a title beginning with “DRAGONS”.

If GetFirst cannot locate a match between s$ and the beginning of a key, it returns the next closest key in alphabetical order. In this way, if GetKey does not return a match then GetFirst can be used to find the ‘nearest hit’. GetFirst can also be used to find the first record in alphabetical order if you set the search term s$ to null -- i.e. s$=“”.

Note: GetKey and GetFirst do not truncate spaces. This means you may need to add spaces to the end of your search term in order to get a meaningful result, particularly with GetKey.

GetNext

The GetNext function is used to locate the next URN in order. This can be done after a GetKey or GetFirst or a GetNext. It is used to browse through and retrieve the records in order.

	Calldll #db, “GetNext”, _
	 hx as word, _		‘handle of the file from OpenIndex
	 result as long		‘URN of the next record

You can check for duplicate entries by using GET#book, result to read the field data from the main datafile and then making comparisons.

GetLast

GetLast is similar to GetFirst except that it searches for a match or the nearest previous record to the search term.
	Calldll #db, “GetLast”, _
	 hx as word, _		‘handle of the file from OpenIndex
	 s$ as ptr, _		‘term to search for
	 result as long		‘URN of record found

GetPrevious

This function is used to retrieve the previous URN in order based on the last record found.

	Calldll #db, “GetPrevious”, _
	 hx as word, _		‘handle of the file from OpenIndex
	 result as long		‘URN of the previous record

GetWild

The GetWild function is a very powerful search facility that allows searching an index using wild cards. Wildcard characters are * and ? and indicate ‘anything’.

	Calldll #db, “GetWild”, _
	 hx as word, _		‘handle of the file from OpenIndex
	 k$ as ptr, _		‘term being searched for
	 result as long		‘first URN found

The wildcards are similar to those used in Dos file operations. Examples:

k$ = “*computer*” finds entries with the term “computer” anywhere in the title

k$ = “comput?r” finds entries with ‘comput’ and ‘r’ at the end but doesn’t care what character is in the position of the ?.

k$ = “*computer” finds entries with the word computer as the last word in the title

k$ = “computer*” finds entries with computer as the first word in the title

k$ = “?omp????” works, too!

In cases where asterisks are included as part of an entry, they can be searched for if they are surrounded by other characters -- i.e. T*A*C*K does not contain wildcards whereas T*A*C*K* does (at the end). The asterisk as a wildcard must be at the first and/or last position in the search term.

GetWild is normally “case insensitive”. This means that compu??r and COMPU??R and cOmPu??r are all treated identically as the same term. But if you add the ! character as a prefix, this makes GetWild case sensitive. Just add a ! at the beginning of the string you are searching for -- i.e. “!compu??r*”.

If the search term is a null (empty string) then GetWild will perform a GetFirst.

If the search term does not contain any wildcard characters, the result is an error (-1).

GetNextWild

This gets the next URN matching the wildcard specified in GetWild.

	Calldll #db, “GetNextWild”, _
	 hx as word, _		‘handle of the file from OpenIndex
	 result as long		‘URN of the next record

If the search term in GetWild is null, GetNextWild performs as a GetNext.

INFO ABOUT THE INDEX

GetCount

Getcount returns the number of keys in an index file.

“GetCount”, _		‘return the number of Keys recorded in the Index
 hx as word,_		‘handle of the file from OpenIndex
 result as long	‘the number of keys in the index file

GetVersion

The GetVersion function returns the version number of Dbdll.

	Calldll #db, “GetVersion”, _
	 result as word, _		‘version number multiplied by 100

If GetVersion returns 109, then the version is 109/100 or 1.09.

MULTIPLE INDEXES

Dbdll allows several index files to be open at the same time. GetNext and GetPrev, etc, are unique to the file that is open (identified by the handle). This means you can GetNext on one next correctly followed by a GetNext on another also correctly without having to GetFirst on the second.

ERRORS FROM DBDLL

VSTUB error.
The most likely cause is an error in the parameter list of the call: WORD instead of LONG, 'string AS PTR' instead of string$ AS PTR, etc.

Dynamic Link Library call error.
The function name (OpenIndex, AddKey, GetFirst, etc) could be spelled incorrectly.

A parameter has been initialised incorrectly.
When using a file with UNIQUE Keys, you do not need to specify the KeyReference number when calling DeleteKey - BUT - if you supply a parameter (instead of '0 AS LONG') be sure to initialise the variable to zero.
'Junk' values can cause a crash. (This is something weird in LB). I have also had this when I have used the RND(1) function to generate a parameter. e.g. --
 x = rnd(1) * 640
 calldll #dll, "SomeFunction", x AS Word, r as result
Make sure the variable is a nice 'clean' value -- x = int(rnd(1) * 640) -- eliminating decimals.

HALT MESSAGES FROM THE DLL

The DLL does some error checking to attempt to trap errors when incorrect parameters are supplied. If an error is detected, you will get a Dialog window with 'HALT(nnn)' where 'nnn' is an error code (see below). After clicking 'OK' the program will be HALTed, and Liberty Basic will 'Close' as well. This ensures that ALL file handles are released.

HALTs caused by you!
100 -	CreateIndex - Couldn't create the index. Possibly invalid File name.
101 -	OpenIndex - Couldn't Open the Index - Possibly invalid file name,
 the Index is in use by another application, or the Index doesnt
 exist.
103 -	A Function is trying to Read the Index - but an invalid File handle
 has been supplied.
104 -	A Function is trying to Write to the Index - but an invalidfile
 handle has been supplied. (This shouldn't happen because every
 Function Reads the Index file before any Writes can take place).
112 -	CloseIndex - Invalid Filehandle.
113 -	DeleteKey - Invalid FileHandle - shouldn't happen - should get HALT
 103 instead.
114 -	The DLL is in use by another application and the file handle
 allocated to an Index file is also being used by the other
 application. Probably caused by a VSTUB error leaving an 'untidy'
 copy of the DLL in memory. The only way to overcome this is to
 Reload Windows.

HALTS caused for other reasons
66, 102, 105, 106, 107, 108, 109, 110, 111 (and maybe a couple more). These are generated if information in the Index file is corrupt. You will need to recreate the Index! If the problem persists - send Brosco a copy of the program, all data files and the Index file. Be sure to record the HALT code you received.

RETURN CODES FROM FUNCTIONS

CreateIndex
 0 = Success
 Anything else is error - but you will probably get HALT 100 instead.

OpenIndex
 FileHandle (>0) this result is used in all other calls to the DLL
 (except GetVersion). A result of less than 1 is an error - but you will
 probably get HALT 101.

GetKey
 < 1. Unable to find a matching Key.
 > 0. The KeyReference of the matching key.

AddKey.
 0 = success
 Anything else is an error - probably trying to Add a Unique key that is
 already in the index - other types of error would result in a HALT (see
 above).

GetFirst, GetNext, GetLast, GetPrevious, GetWild, GetNextWild
 < 1. Unable to find a matching Key.
 > 0. The KeyReference of the matching key.

DeleteKey
 0 = success.
 < 0. Unable to find the Key to delete.

GetCount
 The number of Keys recorded in the Index.

GetVersion
 The Release number of the DLL: 102 means R1.02

NETWORK CONSIDERATIONS

Dbdll has been designed for use on local area networks where file access must be shared. Setting the ‘sharemode’ value to 1 in OpenIndex tells Dbdll to open the index in a shareable mode and to automatically lock records when they are accessed.

Note: LB and ZBW do not support shared random access files. The OPEN statement only opens files for one user at a time. Any other users trying to open the same time will receive a “sharing violation error”. GFA can open files in a shared mode if this is specified in the OPEN statement.

PROBLEMS?

Please report any problems to brosco@orac.net.au
�NOTES FOR USE IN ZBASIC FOR WINDOWS

ZBasic for Windows is similar to Liberty Basic. The calldll syntax to call the DBDLL functions is identical. There are major differences, however, in the way random access files are accessed.

The OPEN statement in ZBW has a different syntax to that in LB. ZBW does not use the FIELD#, GET# and PUT# statements. These are replaced by RECORD#, READ# and WRITE# statements. READ#/WRITE# combine FIELD#, GET#, and PUT#.

Here are the ZBW equivalents to the LB commands described in the RANDOM ACCESS FILES section above:

LB:
‘to open the DLL file
open “dbdll.dll” for dll as #db
ZBW:
OPEN “DLL”,#db,”dbdll.dll”

LB:
‘open the random access file
open "books.dat" for random as #book len = 100
ZBW:
OPEN “R”,#book,”BOOKS.DT”,100

LB:
‘this sets up the structure of a record
field#book, 50 as title$, 25 as series$, 25 as auth$
‘this sets the file pointer and writes the data
put #book, recno
ZBW:
‘this sets the file pointer only
RECORD#book, recno
‘this sets up the structure of a record and writes
WRITE#book, title$;50, auth$;50, publisher$;40, date.of.publication;4, isbn$;20, category$;10, rating;1

LB:
get#book, recno
ZBW:
as above but use READ# instead of WRITE#.

All the CALLDLL functions work in ZBW with exactly the same syntax as in LB.

�NOTES FOR USE IN GFA-BASIC FOR WINDOWS

GFA-Basic for Windows (or GFA) has a very different syntax to that described above for Liberty Basic. It also has several options, different ways of achieving the same thing.

GFA supports both the LB style OPEN statement and the older style used by ZBW.

LB:
‘to open the DLL file
open “dbdll.dll” for dll as #db
GFA:
‘this opens the DLL file and declares the function formats
DLL #3,"dbdll.dll"
 DECL WORD CreateIndex(l,w,w)
 DECL WORD OpenIndex(l,w,w)
 DECL WORD AddKey(w,l,l)
 DECL WORD DeleteKey(w,l,l)
 DECL LONG GetKey(w,l)
 DECL LONG GetFirst(w,l)
 DECL LONG GetNext(w)
 DECL LONG GetLast(w,l)
 DECL LONG GetPrevious(w)
 DECL LONG GetWild(w,l)
 DECL LONG GetNextWild(w)
 DECL WORD CloseIndex(w)
ENDDLL

LB:
‘open the random access file
open "books.dat" for random as #book len = 100
GFA:
‘GFA uses numeric file handles rather than the descriptive style in LB
‘GFA can use #book as a variablename if book=1 is set first
‘GFA allows both the ‘old’ and ‘new’ styles of open
OPEN "cbooks.dat" FOR RANDOM AS #1 LEN =100
or
OPEN “r”,#1,”BOOKS.DT”,100

LB:
‘this sets up the structure of a record
field#book, 50 as title$, 25 as series$, 25 as auth$
‘this sets the file pointer and writes the data
put #book, recno
GFA:
‘GFA can use a similar style to LB’s and also very different ones
FIELD#1,50 as title$, 25 as series$, 25 as auth$
PUT #1, recno&
‘an alternative is to use a TYPE structure and then RECORD# and BGET/BPUT ‘or call the API functions directly

The DLL functions are called with a different format. Instead of:
“CreateIndex”, _	‘this calls the CreateIndex function
 fn$ as ptr, _	‘this specifies the filename
 len as word, _	‘this is the length of the title$ field
 dup as word, _	‘0= no duplicates, 1=duplicates allowed
 result as word	‘0 = created OK, anything else is an error

use result&=^CreateIndex(V:fn$,len&,dup&)
�SUMMARY OF DBDLL FUNCTIONS (LB / ZBW format)

“CreateIndex”, _	‘this calls the CreateIndex function
 fn$ as ptr, _	‘this specifies the filename
 len as word, _	‘this is the length of the title$ field
 dup as word, _	‘0= no duplicates, 1=duplicates allowed
 result as word	‘0 = created OK, anything else is an error

“OpenIndex”, _		‘opens an index file and assigns a handle
 fn$ as ptr, _	‘the index filename
 ShareMode as word, _ ‘0=not shared, 1=shared
 SplitMode as word, _ ‘0=normal, 1=asending, 2=descending
 hx as word		‘result of function is the open file’s handle value

“CloseIndex”, _		‘close an open index file
 hx as word, _	‘file handle of open index to close
 result as word	‘this could be voided

“AddKey”, _		‘add a key to the index
 hx as word, _	‘file handle returned by OpenIndex
 k$ as ptr, _		‘field data to be indexed (the ‘key’)
 urn as long, _	‘the record’s unique record number
 result as word	‘0=success, anything else is an error

“DeleteKey”,_		‘delete a key from the index
 hx as word, _	‘file handle returned by OpenIndex
 k$ as ptr, _		‘field data to be deteled in index
 urn as long, _	‘the record’s unique record number
 result as word	‘0=success, anything else is an error

“GetKey”, _		‘search for a key -- exact match
 hx as word, _	‘handle of the file from OpenIndex
 k$ as ptr, _		‘key to search for
 result as long	‘the URN of the key or 0 if not found

“GetFirst”, _		‘search for start of a key
 hx as word, _	‘handle of the file from OpenIndex
 s$ as ptr, _		‘term to locate
 result as long	‘the URN found

“GetNext”, _		‘return next key in order
 hx as word, _	‘handle of the file from OpenIndex
 result as long	‘URN of the next record

“GetLast”, _		‘search for end of a key
 hx as word, _	‘handle of the file from OpenIndex
 s$ as ptr, _		‘term to search for
 result as long	‘URN of record found

“GetPrevious”, _	‘return previous key in order
 hx as word, _	‘handle of the file from OpenIndex
 result as long	‘URN of the previous record

“GetWild”, _		‘search using wildcard characters * and ?
 hx as word, _	‘handle of the file from OpenIndex
 k$ as ptr, _		‘term being searched for
 result as long	‘first URN found

“GetNextWild”, _	‘return next key based on wildcard search
 hx as word, _	‘handle of the file from OpenIndex
 result as long	‘URN of the next record

“GetCount”, _		‘return the number of Keys recorded in the Index
 hx as word,_		‘handle of the file from OpenIndex
 result as long	‘the number of keys in the index file

“GetVersion”, _		‘return version number of dbdll
 result as word, _	‘version number multiplied by 100

